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Abstract.A continuous time-series of certain hydrographical data, such as water levels, is required 

for various purposes such as time series analysis to study system behaviour and to perform 

predictions. However, due to some technical failure or natural obstacles, disruptions of 

measurements may occur. Data gap filling technique is then required to obtain a reliable 

reconstructed continuous time-series. Linear regression is an example of the simplest technique in 

data gap filling for parameters that can be linearized. Most of hydrographical data, however, are 

highly non-linear. Therefore a more advanced techniques are required to complete the missing data. 

This paper discusses the application of data mining technique in obtaining a continuous water level 

data using the M5 model tree. The main idea of the M5 model tree machine-learning technique is 

that the algorithm splits the parameter space into subspaces and then builds a linear regression 

model for each subspaces. Therefore, the resulting model can be regarded as a modular model. This 

technique was applied to reconstruct a disrupted water level record of the Mahakam Delta, East 

Kalimantan, Indonesia. A datasets obtained during a measurement campaign in 2008-2009 were 

split into the training and validation sets. The model was trained using the three-hourly water level 

data from the Delta Apex and Tenggarong measurement stations. Water level records show the 

semi-diurnal character of tides in the region, and that the tides are still dominant in the upstream 

area at the Tenggarong station located about 40 km from the Delta Apex. Four previous time-step 

data from the Tenggarong station were included as input to the model to cover the time lag of tide 

propagation between the two stations. Nash–Sutcliffe coefficient of Efficiency were used to 

evaluate the model. Nine model rules (using smoothed linear models) were obtained from the 

training of the M5 model tree, which are executed sequentially until suitable conditions are 

matched. Validation shows that M5 model tree can satisfactorily be applied as an alternative tool 

for water level data gap filling in the tide dominated region. 
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1. Introduction 

A continuous time-series of hydrological data is required in river modelling (e.g. Sassi et 

al, 2010). However, due to some technical failure or natural obstacles, field measurement 

campaign conditions were not always ideal to obtain a undisrupted data. Data gap filling 

technique is then required to obtain a reliable reconstructed time-series during disruption 

of field measurements. Linear regression is an example of the simplest technique in data 

hole filling for parameters that can be linearized. Most of hydrological data, however, are 

highly non-linear. Therefore a more advanced techniques are required to complete some 

missing data in hydrological data time-series. A previous work reported by Acock and 

Papepsky (2000) used Group Method of Data Handling (GMDH) for filling gaps in 

weather data. However, the accuracy was rather low. The development in artificial 

intelligence has lead to application of data mining techniques in hydrology such as model 

tree and Artificial Neural Networks (ANNs). Dastorani et al. (2010) use ANNs and 

Adaptive Neuro Fuzzy Inference System (ANFIS) for filling flow data. Ustoorikar and 

Deo (2008) use genetic pogramming for filling up gaps in wave data.  Solomatine and 

Dulal (2003) successfully apply model trees as an alternative to neural networks in 

rainfall-runoff modelling.  

 

This paper is aimed to present and discuss the application of data mining technique in 

obtaining a continuous water level data in the tide-dominated Mahakam Delta region. In 

this study, we used the M5 model tree implemented in the Weka software packages 

(Witten & Frank, 2000). The main idea of the M5 model tree machine-learning technique 

is that the algorithm splits the parameter space into subspaces and then builds a linear 

regression model for each subspaces. Therefore, the resulting model can be regarded as a 

modular model, with the linear models for each particular subsets of the input space. The 

splitting in model tree follows the idea of a decision tree, but instead of the class labels it 

has linear regression functions at the leaves, which can predict continuous numerical 

attributes (Solomatine and Dulal, 2003). Therefore, they are analogous to piece-wise 

linear functions. Details of the M5 model tree training process are given by Witten & 

Frank (2000).  

 

2. Methodology 
 

Study area and Data collection 

Figure 1 shows the study area in the lower Mahakam region, East Kalimantan, Indonesia. 

Water levels were measured using pressure sensors.  Figure 2 shows water level records of 

the Mahakam Delta Apex station including the periods when disruptions occurred.  

 

M5 model tree training 

The M5 model tree used in this study is part of the Waikato Environment for Knowledge 

Analysis (WEKA) version 3.6.8, which was used to predict water level at the Delta Apex 

measurement station. The datasets obtained during the measurement campaign were split 

into the training and validation sets. The model was trained using the three-hourly water 

level data from the Delta Apex and Tenggarong measurement stations (Figure 3). Figure 3 
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(bottom panel) clearly shows the semi-diurnal character of tides in the region, and that the 

tides are still dominant in the upstream area at the Tenggarong station located about 40 km 

from the Delta Apex. Four previous time-step data from the Tenggarong station were 

included as input to the model to cover the time lag of tide propagation between the two 

stations. Therefore, in total, six attributes were included in the model training as listed 

below.  

1. wlda: water level in the Delta Apex at time t 

2. wltg-4: water level in Tenggarong at time t-4  

3. wltg-3: water level in Tenggarong at time t-3 

4. wltg-2: water level in Tenggarong at time t-2 

5. wltg-1: water level in Tenggarong at time t-1 

6. wltg : water level in Tenggarong at time 

 

Figure 1. The study area in the lower Mahakam region, East Kalimantan with two water level 

measurement stations upstream and downstream the city of Samarinda. 
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Figure 2. (top) Water level records of the Mahakam Delta Apex station. Dotted rectangles 

indicate periods when disruptions occurred. (bottom) The same data zoomed at four spring-neap 

cycles showing the semi-diurnal character of the tides in the region. 

 

Figure 3. shows water level data from Delta Apex and Tenggarong measurement stations 

used for training the M5 model tree. The remainder of the data, which were not included 

in the model training  process, were used for validation. Nash–Sutcliffe coefficient of 

Efficiency (E), which is commonly used in rainfall-runoff modelling was used to evaluate 

the discharge simulation by the  model.  

 

where Qo is observed discharge, and Qm is modelled discharge. Qo
t
 is observed discharge 

at time t. In this study, discharges were replaced by water levels. E measures the ability to 

predict variables different from the mean and gives the proportion of the initial variance 

accounted for by the model. E can range from −∞ to 1. 

 

3. Results 

  

Nine model rules (using smoothed linear models) were obtained from the training of M5 

model tree as shown below. The rules are executed sequentially until suitable conditions 

are matched with the last rule (Rule 9) being the last options to be evaluated. Validation 

using data that were not used in the training period shows that M5 model tree can 

satisfactorily be applied as an alternative tool for water level data gap filling in this tide 

dominated region with Nash-Sutcliffe model efficiency of 0.7.   

 

Rule 1:  IF  wltg <= 1.12 AND wltg-2 > 1.277 AND wltg-3 <= 1.507 

THEN  wlda = -0.5489 * wltg-4 + 0.3123 * wltg-3 - 0.9132 * wltg-2 - 0.0525 * wltg-1 + 0.9957 

* wltg + 1.3499 

Rule 2:  IF wltg <= 1.11 AND wltg > 0.654 AND wltg-1 > 0.913 

THEN wlda =  -0.4986 * wltg-4 + 0.3383 * wltg-3 - 0.4529 * wltg-2 - 0.3243 * wltg-1 + 1.2546 

* wltg + 0.8106 

Rule 3:  IF wltg > 0.681 AND wltg <= 1.399 AND wltg-1 > 0.508 AND wltg-1 <= 1.225 

THEN wlda =  -0.6801 * wltg-4 + 0.938 * wltg-3 - 0.7321 * wltg-2 - 0.2264 * wltg-1 + 1.1896 

* wltg + 0.7358  
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Rule 4:  IF wltg <= 0.681 AND wltg-3 <= 0.88 AND wltg-1 > 0.503 

THEN wlda =  -0.437 * wltg-4  + 0.083 * wltg-3 - 0.1943 * wltg-2 - 0.6384 * wltg-1 + 1.56 * 

wltg + 0.7738  

Rule 5: IF wltg <= 1.399 AND wltg <= 0.657 AND wltg-1 > 0.416 

THEN wlda =  -0.5619 * wltg-4 + 0.5766 * wltg-3 - 0.0833 * wltg-2 - 1.4267 * wltg-1 + 1.7488 

* wltg + 0.8051  

Rule 6:  IF wltg <= 1.399 AND wltg-1 <= 0.636 

THEN wlda =  -0.3536 * wltg-4 + 0.2982 * wltg-3 - 0.0857 * wltg-2 - 0.0565 * wltg-1 + 1.0266 

* wltg + 0.7246  

Rule 7: IF wltg > 1.399 AND wltg-1 <= 1.187 

THEN wlda =  -0.2353 * wltg-4 + 0.0644 * wltg-3 - 0.0814 * wltg-2 - 0.3179 * wltg-1 + 1.2267 

* wltg + 0.6582 

Rule 8: IF wltg <= 1.429 

THEN wlda =  -0.2144 * wltg-4 - 0.3331 * wltg-3 - 0.2493 * wltg-2 - 0.5784 * wltg-1 + 1.1145 

* wltg + 1.3131  

Rule 9: ELSE 

wlda =  -0.2716 * wltg-4 - 0.2042 * wltg-2 - 0.5887 * wltg-1 + 1.5593 * wltg + 0.5739  
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Figure 3. Water level data from Delta Apex and Tenggarong measurement stations used for 

training the M5 model tree (top panel). The lower panel is the same data zoomed into two spring-

neap cycles. 
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Figure 4. The reconstructed water level records at the Delta Apex station obtained using the M5 

model tree. 

 

4. Conclusion 
 

Tidal signal in the Mahakam Delta that propagates far upstream is typically semidiurnal. 

The water level record at Tenggarong and Delta Apex stations showed similar properties 

with respect to tidal influence, except that the river flow influence is stronger in 

Tenggarong due to its more upstream location. Similarity in water level pattern can be 

used to model water level at a location using water level data at other location(s) using 

data mining technique. M5 model tree, was used to model water level at the Mahakam 

Delta Apex station using measured water level data at an upstream station in Tenggarong. 

Nine linear models were obtained from the training of M5 model tree using five 

components of input from Tenggarong station (water levels at time t, t-1, t-2, t-3, t-4). The 

model was applied to reconstruct the disrupted water level record during the period 

February to April 2009. Evaluation with data that are not used during the training period 

resulted in Nash-Sutcliffe model efficiency of 0.7 indicating a satisfactory agreement 

between the observed and modelled water levels.   
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